
1

The College Board

AP® Computer Science Principles
Draft Curriculum Framework
February 2014

This document is based upon work supported by the National Science Foundation, grant CNS-
0938336. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

© 2013 The College Board. All rights reserved. Computer Science Principles is a pilot course
under development. It is not an official Advanced Placement course currently offered by the
College Board. This is a draft publication and is not intended for distribution.

2

Introduction

AP® Computer Science Principles is designed to introduce students to the central ideas of computer
science, to instill ideas and practices of computational thinking, and to have students engage in activities
that show how computing changes the world. The course is rigorous and rich in computational content,
includes computational and critical thinking skills, and engages students in the creative aspects of the
field. Through both its content and pedagogy, this course aims to appeal to a broad audience.

This intellectually rich and engaging course emphasizes three key themes that help students build a solid
understanding and facility with computing and computational thinking — understandings that are
important, if not integral, to being part of a well-educated and informed citizenry.

The first theme of the AP Computer Science Principles course is its focus on creativity. The
computational thinking practices and big ideas that follow hint at the creative nature of computing, yet
alone they cannot truly convey the importance of creativity in this course. It’s not enough for students
to know that “computing requires creativity.” Rather, students must actually be creative: creating
artifacts that they want to show off to their friends and family, using simulation to explore questions
that interest them, and designing and implementing solutions employing the iterative and sometimes
messy process that artists, writers, computer scientists, and engineers use to translate ideas into
tangible form.

A second theme is the course’s use of technology as a means for solving computational problems and
exploring creative endeavors, rather than a focus on a specific tool or programming language. To that
end, the course highlights programming as one of the seven big ideas of computer science, because
programming is among the creative processes that help transform ideas into reality. Programming is a
tool students use to explore concepts and create exciting and personally relevant artifacts. In contrast to
traditional college introductory computer science courses and the AP Computer Science A course, the
AP Principles course does not focus on and is not organized around a specific language. The instructor of
the course selects one or more languages, based on appropriateness for a specific project or problem
and according to guidelines provided as part of the course specification. Language specifics are taught
only to the extent that students need them to produce their programs. Similarly, data, and the use of
computational tools to analyze and study data, is another of the big ideas of computer science, as data
plays an incredibly important role in so many aspects of our lives. Students in this course work with large
data sets — they analyze, visualize, draw conclusions from trends— but the course itself does not
specify particular computing tools or the use of specific programming languages for these explorations.

A third theme that helps the course appeal to a broad audience is the course’s focus on people and
society, not just on machines and systems. Students in an AP Computer Science Principles course
explore computer science’s relevance to and impact on the world today. They investigate the
innovations in other fields that computing has made possible. They examine the ethical implications of
new computing technologies. They perform activities that develop their communication and
collaboration skills. Students in this course work individually and collaboratively to solve problems. They
talk and write about their solutions, the importance of these problems, and their impact on the world.

This curriculum framework specifies the course curriculum: the content, practices, thinking, and skills
central to the discipline of computer science. Through this novel content with implications for engaging

3

pedagogy, students will experience the joy and beauty that permeates computing: They will not only
experience the sense of community from connecting with friends on social networks, but they will
understand many aspects of the software and algorithms that make these social networks possible.
They will not only use algorithms, but also create them and experience the “ah ha!” moment when an
algorithm finally makes sense. They will not simply run programs; they will experience the thrill of
constructing a program and seeing it work, as well as the pride of creating something for oneself, one’s
family or friends, or for the world.

Overview of the Curriculum Framework

This curriculum framework is designed to provide a clear and detailed description of the course
curriculum and course content. The key sections of this framework are described below.

 The computational thinking practices skills capture important aspects of the work that computer
scientists engage in at the level of competence expected of AP Computer Science Principles
students. The practices and skills help students coordinate and make sense of knowledge in order
to accomplish a goal or task. They enable students to engage with the AP CSP course content by
developing computational artifacts and analyzing data, information, or knowledge represented for
computational use. In addition, learning to collaborate to build computational artifacts and to
communicate their purpose is a requirement for students to be successful in this course. Because
content knowledge and practices and skills are equally important in Computer Science Principles,
each learning objective includes a direct correlation to a computational thinking practice or skill.

 The key concepts and related content that define the Principles course and exam are organized
around seven big ideas, which encompass fundamental ideas foundational to computing. These big
ideas connect students to a curriculum scope that includes the art of programming but is not
programming focused. For each of the big ideas, enduring understandings, which incorporate the
core concepts that students should retain from their learning experiences, are also identified.

 Each enduring understanding is followed by at least one or more learning objective that provides
clear and detailed articulation of what students should know and be able to do. The learning
objectives are designed to help teachers integrate the computational thinking practices with
specific content, and to provide them clear information about how students will be expected to
demonstrate their knowledge and abilities. They are numbered to correspond with the big ideas
and enduring understandings (e.g., LO 1.1.1).

 Next to each learning objective is a listing of essential knowledge statements. These statements
specify facts or content that students must know in order to be able successfully perform the
learning objectives.. These additional underlying content components are listed numerically in the
column next to the supported learning objective, and each one includes one or more bulleted
statements describing further content details. All examples and content references are considered
to be required and may be the focus of exam questions. For example, the following essential
knowledge content statements correspond to Objective 1.1.1 Apply a creative development
process when creating computational artifacts. [P2]:

4

1.1.1A A creative process in the development of a computational artifact can include but is not
limited to employing non-traditional, non-prescribed techniques; the use of novel combinations
of artifacts, tools and techniques; and the exploration of personal curiosities.
1.1.1B Creating computational artifacts employs an iterative and often exploratory process to
translate ideas into tangible form.

Relationship between the Curriculum Framework and
the Assessments

The learning objectives will be targets of two different types of assessment: an end-of-course AP Exam
and a through-course AP assessment component. The AP Computer Science Principles Exam will be a
computer-based exam. The exam will contain a variety of question types, including single and multiple
select, drag and drop, and limited written response within a text box. Computer specifications for the AP
Computer Science Principles Exam can be found on the AP Computer Science Principles Course Home
Page.

The through-course component is comprised of three performance tasks — separately, these tasks
require students to conduct investigations using data, explore impacts of computing, and create
computational artifacts through programming.

Students will be asked to demonstrate understanding by applying computer science skills and practices
to the learning objectives, including related content from the essential knowledge statements.

Like an exam, the performance tasks are designed to gather evidence of student learning with regard to
the learning objectives. The tasks measure identified learning objectives, which include computational
thinking practices.

Performance tasks assess student achievement in more robust ways than are available on a timed exam.
Additionally, there are a number of learning objectives that are difficult to measure using a traditional
exam but that lend themselves well to a performance task.

These performance tasks require an extended level of effort. Depending on their nature, they could take
several weeks to complete. Each contains specific requirements and a list of learning objectives
addressed by the task. For more information about the AP Computer Science Principles Performance
Tasks go to: http://www.collegeboard.com/html/computerscience/index.html?MTG77-ED-1-apcs

http://www.collegeboard.com/html/computerscience/index.html?MTG77-ED-1-apcs
http://www.collegeboard.com/html/computerscience/index.html?MTG77-ED-1-apcs

5

Computational Thinking Practices Skills

P1: Connecting computing
Developments in computing have far-reaching effects on society and have led to significant innovations.
These developments have implications for individuals, society, commercial markets, and innovation.
Students in this course study these effects and connections, and they learn to draw connections
between different computing concepts. Students are expected to:

 Identify impacts of computing;

 Describe connections between people and computing; and

 Explain connections between computing concepts.

P2: Creating computational artifacts
Computing is a creative discipline in which the creation takes many forms, such as remixing digital
music, generating animations, developing websites, and writing programs. Students in this course
engage in the creative aspects of computing by designing and developing interesting computational
artifacts, as well as by applying computing techniques to creatively solve problems. Students are
expected to:

 Create an artifact with a practical, personal, or societal intent;

 Select appropriate techniques to develop a computational artifact; and

 Use appropriate algorithmic and information-management principles.

P3: Abstracting
Computational thinking requires understanding and applying abstraction at multiple levels, such as,
privacy in social networking applications, logic gates and bits, the human genome project, etc. Students
in this course use abstraction to develop models and simulations of natural and artificial phenomena,
use them to make predictions about the world, and analyze their efficacy and validity. Students are
expected to:

 Explain how data, information, or knowledge are represented for computational use;

 Explain how abstractions are used in computation or modeling;

 Identify abstractions; and

 Describe modeling in a computational context.

P4: Analyzing problems and artifacts
The results and artifacts of computation and the computational techniques and strategies that generate
them can be understood both intrinsically for what they are as well as for what they produce. They can
also be analyzed and evaluated by applying aesthetic, mathematical, pragmatic, and other criteria.
Students in this course design and produce solutions, models, and artifacts, and they evaluate and
analyze their own computational work as well as the computational work that others have produced.
Students are expected to:

 Evaluate a proposed solution to a problem;

 Locate and correct errors;

 Explain how an artifact functions; and

 Justify appropriateness and correctness.

6

P5: Communicating
Students in this course describe computation and the impact of technology and computation, explain
and justify the design and appropriateness of their computational choices, and analyze and describe
both computational artifacts and the results or behaviors of such artifacts. Communication includes
written and oral descriptions supported by graphs, visualizations, and computational analysis. Students
are expected to:

 Explain the meaning of a result in context;

 Describe computation with accurate and precise language, notation, or visualizations; and

 Summarize the purpose of a computational artifact.

P6: Collaborating
Innovation can occur when people work together or independently. People working collaboratively can
often achieve more than individuals working alone. Learning to collaborate effectively includes drawing
on diverse perspectives, skills, and backgrounds of peers to address complex and open-ended problems.
Students in this course collaborate in a number of activities, including investigation of questions using
data sets and in the production of computational artifacts. Students are expected to:

 Collaborate with another student in solving a computational problem;

 Collaborate with another student in producing an artifact;

 Share the workload by providing individual contributions to overall collaborative effort;

 Foster a constructive collaborative climate by resolving conflicts and facilitating the
contributions of a partner or team member;

 Exchange knowledge and feedback with a partner or a team member; and

 Review and revise their work as needed to create a high quality artifact.

7

Big Idea 1: Creativity.

Computing is a creative activity. Creativity and computing are prominent forces in innovation; the
innovations enabled by computing have had and will continue to have far-reaching impact. At the same
time, computing facilitates exploration and the creation of computational artifacts and new knowledge
that help people solve personal, societal, and global problems. This course emphasizes these creative
aspects of computing. Students in this course will use tools and techniques of computer science to
create interesting and relevant artifacts with characteristics that are enhanced by computation.

Essential Questions:
 How can a creative development process affect the creation of computational artifacts?

 How can computing and the use of computational tools foster creative expression?

 How can computing extend traditional forms of human expression and experience?

Enduring
Understandings

Learning Objectives
(What students must

be able to do)

Essential Knowledge
(What students need to know)

1.1 Creative
development can
be an essential
process for
creating
computational
artifacts.

1.1.1 Apply a creative
development process when
creating computational
artifacts. [P2]

1.1.1A A creative process in the development of a
computational artifact can include but is not
limited to employing non-traditional, non-
prescribed techniques; the use of novel
combinations of artifacts, tools and techniques;
and the exploration of personal curiosities.
1.1.1B Creating computational artifacts employs an
iterative and often exploratory process to translate
ideas into tangible form.

1.2 Computing
enables people
to use creative
development
processes when
using computing
tools and
techniques to
create
computational
artifacts for
creative
expression of
ideas or to solve
a problem.

1.2.1 Create a
computational artifact for
creative expression. [P2]

1.2.1A A computational artifact is anything created
by a human using a computer and can be but is not
limited to a program, image, audio, video,
presentation, or web page file.
1.2.1B Creating computational artifacts requires
understanding and using software tools and
services.
1.2.1C Computing tools and techniques are used to
create computational artifacts and can include but
are not limited to programming IDEs, spreadsheets,
3D printers, or text editors.
1.2.1D A creatively developed computational
artifact can be created by using non-traditional,
non-prescribed computing techniques.
1.2.1E Creative expressions in a computational
artifact can reflect personal expressions of ideas or
interests.

8

1.2.2 Create a
computational artifact
using computing tools and
techniques to solve a
problem. [P2]

1.2.2A Computing tools and techniques can
enhance the process of finding a solution to a
problem.
1.2.2B A creative development process for creating
computational artifacts can be used to solve
problems when traditional or prescribed computing
techniques are not effective.

1.2.3 Create a new
computational artifact by
combining or modifying
existing artifacts. [P2]

1.2.3A Creating computational artifacts can be
done by combining and modifying existing artifacts
or by creating new artifacts.
1.2.3B Computation facilitates the creation and
modification of computational artifacts with
enhanced detail and precision.
1.2.3C Combining or modifying existing artifacts
can show personal expression of ideas.

1.2.4 Collaborate in the
creation of computational
artifacts. [P6]

1.2.4A A collaboratively-created computational
artifact reflects effort by more than one person.
1.2.4B Effective collaborative teams consider the
use of online collaborative tools.
1.2.4C Effective collaborative teams practice
interpersonal communication, consensus building,
conflict resolution, and negotiation.
1.2.4D Effective collaboration strategies enhance
performance.
1.2.4E Collaboration facilitates multiple
perspectives in developing computational artifacts,
including diversity of social–cultural perspectives,
talents, and skills that a partner or teammate can
offer.
1.2.4F A collaboratively created computational
artifact can reflect personal expressions of ideas.

1.2.5 Analyze the
correctness, usability,
functionality, and suitability
of computational artifacts.
[P4]

1.2.5A The context in which an artifact is used
determines the correctness, usability, functionality
and suitability of the artifact.
1.2.5B A computational artifact may have
weaknesses, mistakes, or errors depending on the
type of artifact.
1.2.5C The functionality of a computational artifact
may be related to how it is used or how it is
perceived.
1.2.5D The suitability (or appropriateness) of a
computational artifact may be related to how it is
used or how it is perceived.

9

1.3 Computing
can extend
traditional forms
of human
expression and
experience.

1.3.1 Use computing tools
and techniques for creative
expression. [P2]

1.3.1A Creating digital effects, images, audio,
video, and animations has transformed industries.
1.3.1B Digital audio and music can be created by
synthesizing sounds, by sampling existing audio and
music, and by recording and manipulating sounds,
including layering and looping.
1.3.1C Digital images can be created by generating
pixel patterns, manipulating existing digital images,
or combining images.
1.3.1D Digital effects and animations can be
created by using existing software or by modified
software that includes functionality to implement
the effects and animations.
1.3.1E Computing enables creative exploration of
both real and virtual phenomena.

Big Idea 2: Abstraction.

Abstraction reduces information and detail to facilitate focus on relevant concepts. Everyone
uses abstraction on a daily basis to effectively manage complexity. In computer science, abstraction is a
central problem-solving technique. It is a process, a strategy, and the result of reducing detail to focus
on concepts relevant to understanding and solving problems. This course includes examples of
abstractions used in modeling the world, managing complexity, and communicating with people as well
as with machines. Students in this course will learn to work with multiple levels of abstraction while
engaging with computational problems and systems, use models and simulations that simplify complex
topics in graphical, textual, and tabular formats, and use snapshots of models and simulation outputs to
understand how data is changing, identify patterns, and recognize abstractions.

Essential Questions:
 How are vastly different kinds of data, physical phenomena, and mathematical concepts

represented on a computer?

 How does abstraction help us in writing programs, creating computational artifacts and solving
problems?

 How can computational models and simulations help generate new understanding and knowledge?

Enduring
Understandings

Learning Objectives
(What students must

be able to do)

Essential Knowledge
(What students need to know)

2.1
A variety of
abstractions built

2.1.1 Describe the variety
of abstractions used to
represent data. [P3]

2.1.1A Digital data is represented by abstractions at
different levels.
2.1.1B At the lowest level all digital data are

10

upon binary
sequences can be
used to
represent all
digital data.

represented by bits.
2.1.1C At a higher level, bits are grouped to
represent abstractions including but not limited to
numbers, characters and color.
2.1.1D Number bases, including binary, decimal,
and hexadecimal, are used to represent and
investigate digital data.
2.1.1E At one of the lowest levels of abstraction,
digital data is represented in binary (base 2) using
only combinations of the digits zero and one.
2.1.1F Hexadecimal (base 16) is used to represent
digital data because the hexadecimal
representation uses fewer digits than binary.
2.1.1G Numbers can be converted from any base to
any other base.

2.1.2 Explain how binary
sequences are used to
represent digital data. [P5]

2.1.2A A finite representation is used to model the
infinite mathematical concept of a number.
2.1.2B In many programming languages the fixed
number of bits used to represent characters or
integers limits the range of integer values and
mathematical operations; this limitation can result
in overflow or other errors.
2.1.2C In many programming languages the fixed
number of bits used to represent real numbers (as
floating-point numbers) limits the range of floating-
point values and mathematical operations; this
limitation can result in round-off and other errors.
2.1.2D The interpretation of a binary sequence
depends on how it is used.
2.1.2E A sequence of bits may represent
instructions or data.
2.1.2F A sequence of bits may represent different
types of data in different contexts.

2.2 Multiple
levels of
abstraction are
used to write
programs or to
create other
computational
artifacts.

2.2.1 Develop an
abstraction when writing a
program or creating other
computational artifacts.
[P2]

2.2.1A The process of developing an abstraction
involves removing detail and generalizing
functionality.
2.2.1B An abstraction extracts common features
from specific examples in order to generalize
concepts.
2.2.1C An abstraction generalizes functionality with
input parameters that allow software reuse.

2.2.2 Use multiple levels of
abstraction to write

2.2.2A Software is developed using multiple levels
of abstractions such as constants, expressions,

11

programs. [P3]

statements, procedures, and libraries.
2.2.2B Being aware of and using multiple levels of
abstraction in developing programs helps to more
effectively apply available resources and tools to
solve problems.

2.2.3 Identify multiple
levels of abstractions being
used when writing
programs. [P3]

2.2.3A Different programming languages offer
different levels of abstraction.
2.2.3B High-level programming languages provide
more abstractions for the programmer and are
easier for humans to read and write a program.
2.2.3C Code in a programming language is often
translated into code in another lower level
language to be executed on a computer.
2.2.3D In an abstraction hierarchy, higher levels of
abstraction (the most general concepts) would be
placed toward the top and the lower level
abstractions (the more specific concepts) toward
the bottom.
2.2.3E Binary data is processed by physical layers of
computing hardware, including gates, chips, and
components.
2.2.3F A logic gate is a hardware abstraction that is
modeled by a Boolean function.
2.2.3G A chip is an abstraction composed of low-
level components and circuits that perform a
specific function.
2.2.3H A hardware component can be low level like
a transistor or high level like a video card.
2.2.3I Hardware is built using multiple levels of
abstractions such as transistors, logic gates, chips,
memory, motherboards, special purposes cards and
storage devices.
2.2.3J Applications and systems are designed,
developed, and analyzed using levels of hardware,
software, and conceptual abstractions.
2.2.3K Lower level abstractions can be combined to
make higher level abstractions such as short
message services (SMS) or email messages, images,
audio files and videos.

2.3 Models and
simulations use
abstraction to
generate new
understanding

2.3.1 Use models and
simulations to represent
phenomena. [P3]

2.3.1A Models and simulations are simplified
representations of a more complex objects or
phenomena.
2.3.1B Models may use different abstractions or
levels of abstraction depending on the objects or

12

and knowledge.

phenomena being posed.
2.3.1C Models often omit unnecessary features of
the objects or phenomena that are being modeled.
2.3.1D Simulations mimic real-world events without
the cost or danger of building and testing the
phenomenon in the real world.

2.3.2 Use models and
simulations to formulate,
refine, and test hypotheses.
[P3]

2.3.2A Models and simulations facilitate the
formulation and refinement of hypotheses related
to the object or phenomena under consideration.
2.3.2B Hypotheses are formulated to explain the
object or phenomena being modeled.
2.3.2C Hypotheses are refined by examining the
insights models and simulations provide into the
object or phenomena.
2.3.2D The results of simulations may generate new
knowledge and new hypotheses related to the
phenomena being modeled.
2.3.2E Simulations allow hypotheses to be tested
without the constraints of the real world.
2.3.2F Simulations can facilitate extensive and rapid
testing of models.
2.3.2G The time required for simulations is
impacted by the level of detail and quality of the
models, and the software and hardware used for
the simulation.
2.3.2H Rapid and extensive testing allows models
to be changed to accurately reflect the object or
phenomena being modeled.

Big Idea 3: Data and information.

Data and information facilitate the creation of knowledge. Computing enables and empowers new
methods of information processing that have led to monumental change across disciplines, from art to
business to science. Managing and interpreting an overwhelming amount of raw data is part of the
foundation of our information society and economy. People use computers and computation to
translate, process, and visualize raw data, and create information. Computation and computer science
facilitate and enable a new understanding of data and information that contributes knowledge to the
world. Students in this course will work with data using a variety of computational tools [LD8] [f9] [RK10]
and techniques to better understand the many ways in which data is transformed into information and
knowledge.

Essential Questions:

13

 How can computation be employed to help people process data and information to gain insight and
knowledge?

 How can computation be employed to facilitate exploration and discovery when working with data?

 What considerations and trade-offs arise in the computational manipulation of data?

 What opportunities do large data sets provide for solving problems and creating knowledge?

Enduring
Understandings

Learning Objectives
(What students must

be able to do)

Essential Knowledge
(What students need to know)

3.1 People use
computer
programs to
process
information to
gain insight and
knowledge.

3.1.1 Use computers to
process information, find
patterns, and test
hypotheses about digitally
processed information to
gain insight and knowledge.
[P4]

3.1.1A Computers are used in an iterative and
interactive way when processing digital information
to gain insight and knowledge.
3.1.1B Digital information can be filtered and
cleaned by using computers to process information.
3.1.1C Combining data sources, clustering data and
data classification are part of the process of using
computers to process information.
3.1.1D Insight and knowledge can be obtained from
translating and transforming digitally represented
information.
3.1.1E Patterns can emerge when data is
transformed using computational tools.

3.1.2 Collaborate when
processing information to
gain insight and knowledge.
[P6]

3.1.2A Collaboration is an important part of solving
data-driven problems.
3.1.2B Collaboration facilitates solving
computational problems through multiple
perspectives, experiences, and skill sets.
3.1.2C Communication between participants
working on data-driven problems gives rise to
enhanced insights and knowledge.
3.1.2D Collaboration in developing hypotheses and
questions and in testing hypotheses and answering
questions about data helps gain insight and
knowledge.
3.1.2E Collaborating face-to-face and using online
collaborative tools can facilitate processing
information to gain insight and knowledge.
3.1.2F Investigating large data sets collaboratively
can lead to insight and knowledge not obtained
working alone.

3.1.3 Explain the insight
and knowledge gained from
digitally processed data by

3.1.3A Visualization tools and software can
communicate information about data.
3.1.3B Tables, diagrams, and textual displays can be

14

using appropriate
visualizations, notation,
and precise language. [P5]

used in communicating insight and knowledge
gained from data.
3.1.3C Summaries of data analyzed computationally
can be effective in communicating insight and
knowledge gained from digitally represented
information.
3.1.3D Transforming information can be effective in
communicating knowledge gained from data.
3.1.3E Interactivity with data is an aspect of
communicating.

3.2 Computing
facilitates
exploration and
the discovery of
connections in
information.

3.2.1 Extract information
from data to discover and
explain connections,
patterns, or trends. [P1]

3.2.1A The use of large data sets provides
opportunities and challenges for extracting
information and knowledge.
3.2.1B Large data sets provide opportunities for
identifying trends, making connections in data, and
solving problems.
3.2.1C Computing tools facilitate the discovery of
connections in information within large data sets.
3.2.1D Search tools are essential for efficiently
finding information.
3.2.1E Information filtering systems are important
tools for finding information and recognizing
patterns in the information.
3.2.1F Software tools, including spreadsheets and
databases, help to efficiently organize and find
trends in information.
3.2.1G Metadata is data about data.
3.2.1H Metadata can be descriptive data about an
image, a web page, or other complex objects.
3.2.1I Metadata can increase the effective use of
data or data sets by providing additional
information about various aspects of that data.

3.2.2. Use large data sets to
explore and discover
information and
knowledge. [P3]

3.2.2A Large data sets include data such as
transactions, measurements, text, sound, images,
and video.
3.2.2B The storing, processing, and curating of large
data sets is challenging.
3.2.2C Structuring large data sets for analysis can
be challenging.
3.2.2D Maintaining privacy of large data sets
containing personal information can be challenging.
3.2.2E Scalability of systems is an important
consideration when data sets are large.
3.2.2F The size or scale of a system that stores data

15

affects how that data set is used.
3.2.2G The effective use of large data sets requires
computational solutions.
3.2.2H Analytical techniques to store, manage,
transmit, and process data sets change as the size
of data sets scale.

3.3 There are
trade-offs when
representing
information as
digital data.

.

3.3.1 Analyze how data
representation, storage,
security, and transmission
of data involve
computational
manipulation of
information. [P4]

3.3.1A Digital data representations involve trade-
offs related to storage, security, and privacy
concerns.
3.3.1B Security concerns engender trade-offs in
storing and transmitting information.
3.3.1C There are trade-offs in using lossy and
lossless compression techniques for storing and
transmitting data.
3.3.1D Lossless data compression reduces the
number of bits stored or transmitted, but allows
complete reconstruction of the original data.
3.3.1E Lossy data compression can significantly
reduce the number of bits stored or transmitted at
the cost of being able to reconstruct only an
approximation of the original data.
3.3.1F Security and privacy concerns arise with data
containing personal information.
3.3.1G Data is stored in many formats depending
on its characteristics, such as size and intended use.
3.3.1H The choice of storage media affects both the
methods of and costs of manipulating the data it
contains.
3.3.1I Reading data and updating data have
different storage requirements.

Big Idea 4: Algorithms.

Algorithms are used to develop and express solutions to computational problems. Algorithms
are fundamental to even the most basic everyday tasks. Algorithms realized in software have affected
the world in profound and lasting ways. Secure data transmission and quick access to large amounts of
relevant information are made possible through the implementation of algorithms. The development,
use, and analysis of algorithms is one of the most fundamental aspects of computing. Students in this
course will work with algorithms in many ways: they will develop and express original algorithms, they
will implement algorithms in some language, and they will analyze algorithms both analytically and
empirically.

16

Essential Questions:
 How are algorithms implemented and executed on computers and computational devices?

 Why are some languages better than others when used to implement algorithms?

 What kinds of problems are easy, what kinds are difficult, and what kinds are impossible to solve
algorithmically?

 How are algorithms evaluated?

Enduring
Understandings

Learning Objectives
(What students must

be able to do)

Essential Knowledge
(What students need to know)

4.1 Algorithms
are precise
sequences of
instructions for
processes that
can be executed
by a computer
and are
implemented
using
programming
languages.

4.1.1 Develop an algorithm
for implementation in a
program. [P2]

4.1.1A Sequencing, selection, and iteration are
building blocks of algorithms.
4.1.1B Sequencing is the application of each step of
an algorithm in the order in which the statements
are given.
4.1.1C Selection uses a Boolean condition to
determine which of two parts of an algorithm is
used.
4.1.1D Iteration is the repetition of a part of an
algorithm until a condition is met or for a specified
number of times.
4.1.1E Algorithms can be combined to make new
algorithms.
4.1.1F Using existing correct algorithms as building
blocks for constructing a new algorithm helps
ensure the new algorithm is correct.
4.1.1G Knowledge of standard algorithms can help
in constructing new algorithms.
4.1.1H Different algorithms can be developed to
solve the same problem.
4.1.1I Algorithms that solve the same problem can
have different efficiencies.
4.1.1J Developing a new algorithm to solve a
problem can yield insight into the problem.

4.1.2 Express an algorithm
in a language. [P5]

4.1.2A Languages for algorithms include natural
language, pseudocode, and visual and textual
programming languages.
4.1.2B Natural language and pseudocode describe
algorithms so that humans can understand them.
4.1.2C Algorithms described in programming
languages can be executed on a computer.
4.1.2D Different languages are better suited for
expressing different algorithms.
4.1.2E Some programming languages are designed

17

for specific domains and are better for expressing
algorithms in those domains.
4.1.2F The language used to express an algorithm
can affect characteristics such as clarity or
readability but not whether an algorithmic solution
exists.
4.1.2G Every algorithm can be constructed using
only sequencing, selection, and iteration.
4.1.2H Nearly all programming languages are
equivalent in terms of being able to express any
algorithm.
4.1.2I Clarity and readability are important
considerations when expressing an algorithm in a
language.

4.2 Algorithms
can solve many
but not all
problems.

4.2.1 Explain the difference
between algorithms that
run in a reasonable time
and those that do not run
in a reasonable time. [P1]

4.2.1A Many problems can be solved in a
reasonable time.
4.2.1B Reasonable time means that as the input
size grows, the number of steps the algorithm takes
is proportional to the square (or cube, fourth
power, fifth power, etc.) of the size of the input.
4.2.1C Some problems cannot be solved in a
reasonable time, even for small input sizes.
4.2.1D Some problems can be solved but cannot be
solved in a reasonable time. In these cases,
heuristic approaches may be helpful to find
solutions in reasonable time.

4.2.2 Explain the difference
between solvable and
unsolvable problems in
computer science. [P1]

4.2.2A A heuristic is a technique that may allow us
to find an approximate solution when typical
methods fail to find an exact solution.
4.2.2B Heuristics may be helpful finding an
approximate solution more quickly when exact
methods are too slow.
4.2.2C Some optimization problems such as “find
the best” or “find the smallest” cannot be solved in
a reasonable time, but approximations to the
optimal solution can.
4.2.2D Some problems cannot be solved using any
algorithm.

4.2.3 Explain the existence
of undecidable problems in
computer science. [P1]

4.2.3A An undecidable problem may have instances
that have an algorithmic solution, but there is no
algorithmic solution that solves all instances of the
problem.
4.2.3B A decidable problem is one in which an

18

algorithm can be constructed to answer 'yes' or 'no'
for all inputs, such as "is the number even?"
4.2.3C An undecidable problem is one in which no
algorithm can be constructed that always leads to a
correct yes-or-no answer.

4.2.4 Evaluate algorithms
analytically and empirically
for efficiency, correctness,
and clarity. [P4]

4.2.4A Determining an algorithm’s efficiency is
done by reasoning formally or mathematically
about the algorithm.
4.2.4B Empirical analysis of an algorithm is done by
implementing the algorithm and running it on
different inputs.
4.2.4C The correctness of an algorithm is
determined by reasoning formally or
mathematically about the algorithm, not by testing
an implementation of the algorithm.
4.2.4D Different correct algorithms for the same
problem can have different efficiencies.
4.2.4E Sometimes more efficient algorithms are
more complex.
4.2.4F Finding an efficient algorithm for a problem
can help solve larger instances of the problem.
4.2.4G Efficiency includes both execution time and
memory usage.
4.2.4H Linear search can be used when searching
for an item in any list but binary search can be used
only when the list is sorted.

Big Idea 5: Programming

Programming enables problem solving, human expression, and creation of knowledge.
Programming and the creation of software have changed our lives. Programming results in the creation
of software, and it facilitates the creation of computational artifacts including music, images,
visualizations, and more. In this course, programming will enable exploration and is the object of study.
This course will introduce students to the concepts and techniques related to writing programs,
developing software, and using software effectively; the focus of the course is not on programming per
se, but on all aspects of computation. Students in this course will create programs, translating human
intention into computational artifacts.

Essential Questions:
 How are programs developed to help people, organizations or society solve problems?

 How are programs used for creative expression, to satisfy personal curiosity or to create new
knowledge?

19

 How do computer programs implement algorithms?

 How does abstraction make the development of computer programs possible?

 How do people develop and test computer programs?

 Which mathematical and logical concepts are fundamental to computer programming?

Enduring
Understandings

Learning Objectives
(What students must

be able to do)

Essential Knowledge
(What students need to know)

5.1 Programs can
be developed to
solve problems
(to help people,
organizations or
society); for
creative
expression; to
satisfy personal
curiosity or to
create new
knowledge.

5.1.1 Develop a program
for creative expression, to
satisfy personal curiosity or
to create new knowledge.
[P2]

5.1.1A Programs are developed and used in a
variety of ways by a wide range of people
depending on the goals of the programmer.
5.1.1B Programs developed for creative expression
or to satisfy personal curiosity may have visual,
audible, or tactile inputs and outputs.
5.1.1C Programs developed for creative expression
or to satisfy personal curiosity may be developed
with different standards or methods than programs
developed for widespread distribution.
5.1.1D Additional desired outcomes may be
realized independently of the original purpose of
the program.
5.1.1E A computer program or the results of
running a program may be rapidly shared with a
large number of users and can have widespread
impact on individuals, organizations, and society.
5.1.1F Advances in computing have generated and
increased creativity in other fields.

5.1.2 Develop a correct
program to solve problems.
[P2]

5.1.2A An iterative process of program
development helps in developing a correct program
to solve problems.
5.1.2B Developing correct program components
and then combining them helps in creating correct
programs.
5.1.2C Incrementally adding tested program
segments to correct, working programs helps
create large correct programs.
5.1.2D Program documentation helps programmers
develop and maintain correct programs to
efficiently solve problems.
5.1.2E Documentation about program components,
such as blocks and procedures help in developing
and maintaining programs.
5.1.2F Documentation helps in developing and
maintaining programs when working individually or

20

in collaborative programming environments.
5.1.2G Program development includes identifying
programmer and user concerns that affect the
solution to problems.
5.1.2H Consultation and communication with
program users is an important aspect of program
development to solve problems.
5.1.2I A programmer’s knowledge and skill affects
how a program is developed and how it is used to
solve a problem.
5.1.2J A programmer designs, implements, tests,
debugs, and maintains programs when solving
problems.

5.1.3 Collaborate to
develop a program. [P6]

5.1.3A Collaboration can decrease the size and
complexity of tasks required of individual
programmers.
5.1.3B Collaboration facilitates multiple
perspectives in developing ideas for solving
problems by programming.
5.1.3C Collaboration in the iterative development
of a program requires different skills than
developing a program alone.
5.1.3D Collaboration can make it easier to find and
correct errors when developing programs.
5.1.3E Collaboration facilitates developing program
components independently.
5.1.3F Effective communication between
participants is required for successful collaboration
when developing programs.

5.2 People write
programs to
execute
algorithms.

5.2.1 Explain how programs
implement algorithms. [P3]

5.2.1A Algorithms are implemented using program
instructions that are processed during program
execution.
5.2.1B Program instructions are executed
sequentially.
5.2.1C Program instructions may involve variables
that are initialized and updated, read and written.
5.2.1D An understanding of instruction processing
and program execution is useful for programming.
5.2.1E Program execution automates processes.
5.2.1F Processes use memory, a central processing
unit (CPU), and input and output.
5.2.1G A process may execute by itself or with
other processes.
5.2.1H A process may execute on one or several

21

CPUs.
5.2.1I Executable programs increase the scale of
problems that can be addressed.
5.2.1J Simple algorithms can solve a large set of
problems when automated.
5.2.1K Improvements in algorithms, hardware, and
software increase the kinds of problems and the
size of problems solvable by programming.

5.3 Programming
is facilitated by
appropriate
abstractions.

5.3.1 Use abstraction to
manage complexity in
programs. [P3]

5.3.1A Procedures are reusable programming
abstractions.
5.3.1B A function is a named grouping of
programming instructions.
5.3.1C Procedures reduce the complexity of writing
and maintaining programs.
5.3.1D Procedures have names and may have
parameters and return values.
5.3.1E Parameterization can generalize a specific
solution.
5.3.1F Parameters generalize a solution by allowing
a function to be used instead of duplicated code.
5.3.1G Parameters provide different values as input
to procedures when they are called.
5.3.1H Data abstraction provides a means of
separating behavior from implementation.
5.3.1I Strings and string operations, including
concatenation and some form of substring, are
common in many programs.
5.3.1J Integers and floating-point numbers are used
in programs without requiring understanding of
how they are implemented.
5.3.1K Lists and list operations such as add,
remove, and search are common in many
programs.
5.3.1L Using lists and procedures as abstractions in
programming can result in programs that are easier
to develop and maintain.
5.3.1M Application program interfaces (APIs) and
libraries simplify complex programming tasks.
5.3.1N Documentation for an API/library is an
important aspect of programming.
5.3.1O APIs connect software components,
allowing them to communicate.

5.4 Programs are
developed,

5.4.1 Evaluate the
correctness of a program.

5.4.1A Program style can affect the determination
of program correctness.

22

maintained, and
used by people
for different
purposes.

[P4]

5.4.1B Duplicated code can make it harder to
reason about a program.
5.4.1C Meaningful names for variables and
procedures help people better understand
programs.
5.4.1D Longer code blocks are harder to reason
about than shorter code blocks in a program.
5.4.1E Locating and correcting errors in a program
is called debugging the program.
5.4.1F Knowledge of what a program is supposed to
do is required in order to find most program errors.
5.4.1G Examples of intended behavior on specific
inputs help people understand what a program is
supposed to do.
5.4.1H Visual displays (or different modalities) of
program state can help in finding errors.
5.4.1I Programmers justify and explain a program’s
correctness.
5.4.1J Justification can include a written
explanation about how a program meets its
specifications.
5.4.1K Correctness of a program depends on
correctness of program components, including
code blocks and procedures.
5.4.1L An explanation of a program helps people
understand the functionality and purpose of a
program.
5.4.1M The functionality of a program is often
described by how a user interacts with the
program.
5.4.1N The functionality of a program is best
described at a high level by what the program does,
not at a lower level of how the program statements
work to accomplish this.

5.5 Programming
uses
mathematical
and logical
concepts.

5.5.1 Employ appropriate
mathematical and logical
concepts in programming.
[P1]

5.5.1A Numbers and numerical concepts are
fundamental to programming.
5.5.1B Integers may be constrained in the
maximum and minimum values that can be
represented in a program because of storage
limitations.
5.5.1C Real numbers are approximated by floating-
point representations that do not necessarily have
infinite precision.
5.5.1D Mathematical expressions using arithmetic
operators are part of most programming languages.

23

5.5.1E Logical concepts and Boolean algebra are
fundamental to programming.
5.5.1F Compound expressions using and, or, and
not are part of most programming languages.
5.5.1G Intuitive and formal reasoning about
program components using Boolean concepts helps
in developing correct programs.
5.5.1H Computational methods may use lists and
collections to solve problems.
5.5.1I Lists and other collections can be treated as
abstract data types (ADTs) in developing programs.
5.5.1J Basic operations on collections include
adding elements, removing elements, iterating over
all elements, and determining whether an element
is in a collection.

Big Idea 6: The Internet.

The Internet pervades modern computing. The Internet and the systems built on it have had a
profound impact on society. Computer networks support communication and collaboration. The
principles of systems and networks that helped enable the Internet are also critical in the
implementation of computational solutions. Students in this course will gain insight into how the
Internet operates, study characteristics of the Internet and systems built upon it, and analyze important
concerns such as cybersecurity.

Essential Questions:
 What is the Internet, how is it built, and how does it function?

 What aspects of the Internet’s design and development have helped it scale and flourish?

 How is cybersecurity impacting the ever increasing number of Internet users?

Enduring
Understandings

Learning Objectives
(What students must

be able to do)

Essential Knowledge
(What students need to know)

6.1 The Internet
is a network of
autonomous
systems.

6.1.1 Explain the
abstractions in the Internet
and how the Internet
functions. [P3]

6.1.1A The Internet connects devices and networks
all over the world.
6.1.1B An end-to-end architecture facilitates
connecting new devices and networks on the
Internet.
6.1.1C Devices and networks that make up the
Internet are connected and communicate using
addresses and protocols.

24

6.1.1D The Internet and the systems built on it
facilitate collaboration.
6.1.1E Connecting new devices to the Internet is
enabled by assignment of an IP address.
6.1.1F The Internet is built on evolving standards
including those for addresses and names.
6.1.1G The Domain Name System (DNS) translates
names to Internet protocol (IP) addresses.
6.1.1H The number of devices that could use an IP
address has grown so fast that a new protocol
(IPv6) has been established to handle routing of
many more devices.
6.1.1I Standards such as hypertext transfer protocol
(HTTP), Internet protocol (IP), and simple mail
transfer protocol (SMTP) are developed and
overseen by the Internet Engineering Task Force
(IETF).

6.2
Characteristics of
the Internet
influence the
systems built on
it.

6.2.1 Explain characteristics
of the Internet and the
systems built on it. [P5]

6.2.1A The Internet and the systems built on it are
hierarchical and redundant.
6.2.1B The domain name syntax is hierarchical.
6.2.1C IP addresses are hierarchical.
6.2.1D Routing on the Internet is fault tolerant and
redundant.

6.2.2 Explain how the
characteristics of the
Internet influence the
systems built on it. [P4]

6.2.2A Hierarchy and redundancy help systems
scale.
6.2.2B The duplication of routing (i.e., more than
one way to route data) between two points on the
Internet increases the reliability of the Internet and
helps it scale to more devices and more people.
6.2.2C Hierarchy in the Domain Name System (DNS)
helps that system scale.
6.2.2D Interfaces and protocols enable widespread
use.
6.2.2E Open standards fuel the growth of the
Internet.
6.2.2F The Internet is a packet-switched system
through which digital data is sent by breaking the
data into blocks of bits called packets that contain
both the data being transmitted and control
information for routing the data.
6.2.2G Standards for packets and routing include
transmission control protocol/Internet protocol
(TCP/IP).
6.2.2H Standards for sharing information and

25

communicating between browsers and servers on
the web include hypertext transfer protocol (HTTP),
and secure sockets layer/transport layer security
(SSL/TLS).
6.2.2I The size and speed of systems affect their
use.
6.2.2J The bandwidth of a system is a measure of
bit rate — the amount of data (measured in bits)
that can be sent in a fixed amount of time.
6.2.2K The latency of a system is the time elapsed
between the transmission and the receipt of a
request.

6.3 Cybersecurity
is an important
concern for the
Internet and the
systems built on
it.

6.3.1 Identify existing
cybersecurity concerns, and
potential options that
address these issues with
the Internet and the
systems built on it. [P1]

6.3.1A The trust model of the Internet involves
trade-offs.
6.3.1B The Domain Name System (DNS) was not
designed to be completely secure.
6.3.1C Implementing cybersecurity has software,
hardware, and human components.
6.3.1D Cyber warfare and cybercrime have
widespread and potentially devastating effects.
6.3.1E Distributed denial-of-service attacks (DDoS)
compromise a target by flooding it with requests
from multiple systems.
6.3.1F Phishing, viruses, and other attacks have
human and software components.
6.3.1G Antivirus software and firewalls can help
prevent unauthorized access to private data.
6.3.1H Cryptography is essential to many models of
cybersecurity.
6.3.1I Cryptography has a mathematical
foundation.
6.3.1J Open standards help ensure cryptography is
secure.
6.3.1K Symmetric encryption is a method of
encryption involving one key for encryption and
decryption.
6.3.1L Public key encryption, which is not
symmetric, is an encryption method that is widely
used because of the enhanced security associated
with its use.
6.3.1M Certificate authorities (CAs) issue digital
certificates that validate the ownership of
encrypted keys used in secured communication and
are based on a trust model.

26

Big Idea 7: Global Impact.

Computing has global impacts. Computation has changed the way people think, work, live, and play.
Our methods for communicating, collaborating, problem solving, and doing business have changed and
are changing due to innovations enabled by computing. Many innovations in other fields are fostered by
advances in computing. Computational approaches lead to new understandings, new discoveries, and
new disciplines. Students in this course will become familiar with many ways in which computing
enables innovation, and they will analyze the potential benefits and harmful effects of computing in a
number of contexts.

 Essential Questions:
 How does computing enhance human communication, interaction, and cognition?

 How does computing enable innovation?

 What are some potential beneficial and harmful effects of computing?

 How do economic, social, and cultural contexts influence innovation and the use of computing?

Enduring
Understandings

Learning Objectives
(What students must

be able to do)

Essential Knowledge
(What students need to know)

7.1 Computing
enhances
communication,
interaction, and
cognition.

7.1.1 Explain how
computing innovations
affect communication,
interaction, and cognition.
[P4]

7.1.1A Email, short message service (SMS), and chat
have fostered new ways to communicate and
collaborate.
7.1.1B Video conferencing and video chat have
fostered new ways to communicate and
collaborate.
7.1.1C Social media continues to evolve and foster
new ways to communicate.
7.1.1D Cloud computing fosters new ways to
communicate and collaborate.
7.1.1E Widespread access to information facilitates
the identification of problems, development of
solutions, and dissemination of results.
7.1.1F Public data provides widespread access and
enables solutions to identified problems.
7.1.1G Search trends are predictors.
7.1.1H Social media, including blogs and twitter,
have enabled dissemination.
7.1.1I Global Positioning System (GPS) and related
technologies have changed how humans travel,
navigate, and find information related to
geolocation.
7.1.1J Sensor networks facilitate new ways of
interacting with the environment and with physical
systems.

27

7.1.1K Smart grids, smart buildings, and smart
transportation are changing and facilitating human
capabilities.
7.1.1L Computing contributes to many assistive
technologies that enhance human capabilities.
7.1.1M The Internet and the Web have enhanced
methods of and opportunities for communication
and collaboration.
7.1.1N The Internet and the Web have changed
many areas, including e-commerce, health care,
access to information and entertainment, and
online learning.
7.1.1O The Internet and the Web have impacted
productivity, positively and negatively, in many
areas.

7.1.2 Explain how people
participate in a problem
solving process that scales.
[P4]

7.1.2A Distributed solutions must scale to solve
some problems.
7.1.2B Science has been impacted by using scale
and “citizen science” to solve scientific problems
using home computers in scientific research.
7.1.2C Human computation harnesses
contributions from many humans to solve problems
related to digital data and the Web.
7.1.2D Human capabilities are enhanced by digitally
enabled collaboration.
7.1.2E Some online services use the contributions
of many people to benefit both individuals and
society.
7.1.2F Crowdsourcing offers new models for
collaboration such as connecting people with jobs
and businesses with funding.
7.1.2G The move from desktop computers to a
proliferation of always-on mobile computers is
leading to new applications.

7.2 Computing
enables
innovation in
nearly every
field.

7.2.1 Explain how
computing has impacted
innovations in other fields.
[P1]

7.2.1A Machine learning and data mining have
enabled innovation in medicine, business, and
science.
7.2.1B Scientific computing has enabled innovation
in science and business.
7.2.1C Computing enables innovation by providing
access to and sharing of information.
7.2.1D Open access and Creative Commons have
enabled broad access to digital information.
7.2.1E Open and curated scientific databases have

28

benefited scientific researchers.
7.2.1F Moore’s law has encouraged industries that
use computers to effectively plan future research
and development based on anticipated increases in
computing power.
7.2.1G Advances in computing as an enabling
technology have generated and increased the
creativity in other fields.

7.3 Computing
has global effects
– both beneficial
and harmful – on
people and
society.

7.3.1 Analyze the beneficial
and harmful effects of
computing. [P4]

7.3.1A Innovations enabled by computing raise
legal and ethical concerns.
7.3.1B Commercial access to music and movie
downloads and streaming raises legal and ethical
concerns.
7.3.1C Access to digital content via peer-to-peer
networks raises legal and ethical concerns.
7.3.1D Both authenticated and anonymous access
to digital information raises legal and ethical
concerns.
7.3.1E Commercial and governmental censorship of
digital information raise legal and ethical concerns.
7.3.1F Open source and licensing of software and
content raise legal and ethical concerns.
7.3.1G Privacy and security concerns arise in the
development and use of computational systems
and artifacts.
7.3.1H Aggregation of information including
geolocation, cookies, and browsing history raises
privacy and security concerns.
7.3.1I Anonymity in online interactions can be
enabled through the use of online anonymity
software and proxy servers.
7.3.1J Technology enables collection, use, and
exploitation of information about, by, and for
individuals, groups, and institutions.
7.3.1K People can have instant access to vast
amounts of information online; accessing this
information can enable collection of both individual
and aggregate data that can be used and collected.
7.3.1L Commercial and governmental curation of
information may be exploited if privacy and other
protections are ignored.
7.3.1M Targeted advertising is used to help
individuals, but it can be misused at both individual
and aggregate levels.
7.3.1N Widespread access to digitized information

29

raises questions about intellectual property.
7.3.1O Creation of digital audio, video, and textual
content by combining existing content has been
impacted by copyright concerns.
7.3.1P The Digital Millennium Copyright Act
(DMCA) has been a benefit and a challenge in
making copyrighted digital material widely
available.
7.3.1Q Open source and free software have
practical, business, and ethical impacts on
widespread access to programs, libraries, and code.

7.4 Computing
innovations
influence and are
influenced by the
economic, social,
and cultural
contexts in which
they are
designed and
used.

7.4.1 Explain the
connections between
computing and economic,
social, and cultural
contexts. [P1]

7.4.1A The innovation and impact of social media
and online access is different in different countries
and in different socioeconomic groups.
7.4.1B Mobile, wireless, and networked computing
have an impact on innovation throughout the
world.
7.4.1C The global distribution of computing
resources raises issues of equity, access, and
power.
7.4.1D Groups and individuals are affected by the
“digital divide” — differing access to computing and
the Internet based on socioeconomic or geographic
characteristics.
7.4.1E Networks and infrastructure are supported
by both commercial and governmental initiatives.

30

Contributors:

Don Allen, Troy High School
Christine Alvarado, University of California, San Diego
Owen Astrachan, Duke University
Stacey Armstrong, Cypress Woods High School
Duane Bailey, Williams College
Tiffany Barnes, University of North Carolina, Charlotte
Charmaine Bentley, Franklin D. Roosevelt High School
Amy Briggs, Middlebury College
Gail Chapman, Computer Science Teachers Association
Tom Cortina, Carnegie Mellon University
Stephen Edwards, Virginia Tech
Dan Garcia, University of California, Berkeley*
Christina Gardner-McCune, Clemson University*
Joanna Goode, University of Oregon
Mark Guzdial, Georgia Tech
Susanne Hambrusch, Purdue University
Michelle Hutton, Computer Science Teachers Association
Rich Kick, Newbury Park High School*
Andrew Kuemmel, West Madison High School*
Deepak Kumar, Bryn Mawr College
James Kurose, University of Massachusetts, Amherst
Andrea Lawrence, Spellman College
Deepa Muralidhar, North Gwinnett High School*
Richard Pattis, University of California, Irvine
Jody Paul, Metropolitan State University of Denver
Dale Reed, University of Illinois, Chicago*
Eric Roberts, Stanford University
Katie Siek, University Colorado at Boulder
Beth Simon, University of California, San Diego
Larry Snyder, University of Washington
Chris Stephenson, Computer Science Teachers Association
Lynn Andrea Stein, Olin College
Fran Tress, Rutgers University*
Cameron Wilson, Association for Computing Machinery

*Members of the AP Computer Science Principles Development Committee

